The average value from Table I was corrected for 0.02 mole % CF<sub>4</sub> using -39.3 kcal. per mole as the energy of reaction of CF4 and hydrogen. The corrected figure for  $-\Delta E^0 r/M$  is 2793.0 cal. per gram. Using atomic weights of 14.0067 for N and 18.9984 for F, the molar energy of reaction is  $\Delta E^{\circ}r = -198.31$  kcal. per mole. The reaction to which this refers is:

$$NF_3(g) + \frac{3}{2} H_2(g) \rightarrow \frac{1}{2} N_2(g) + 3HF(1 \text{ in } 123 H_2O)$$

Correcting to constant pressure conditions:  $\Delta H^0 r_{298} =$  $-199.49 \pm 0.22$  kcal. per mole. The uncertainty is twice the over-all standard deviation.

Armstrong, Marantz, and Coyle (1) quoted -202.1 kcal. per mole based on NF3 dosage and -208.4 kcal. per mole based on HF recovery, with the HF adjusted to infinite dilution. On the same basis for HF, the present work gives -208.40 kcal. per mole, in exact agreement with the value based on HF recovery. It would appear that the  $NF_3$  used by Armstrong and coworkers was less pure than they estimated.

Ludwig and Cooper (5) measured the heat of reaction of boron and nitrogen trifluoride and derived  $\Delta H f_{298}(NF_3, g) =$  $-30.4 \pm 1.2$  kcal. per mole. Employing this value and the present work yields  $\Delta Hf_{298}(HF, 1 \text{ in } 123 \text{ H}_2\text{O}) = -76.63 \text{ kcal}$ . per mole. This is 0.94 kcal. per mole more negative than the value listed in Circular 500 (7). The heat of formation of ideal gaseous HF is also probably more negative than the value selected for Circular 500 (2). There is obviously a need for revision of the thermochemical values for gaseous HF and its aqueous solutions.

## LITERATURE CITED

- Armstrong, G.T., Marantz, S., Coyle, C.F., J. Am. Chem. Soc. (1)81, 3798 (1959).
- Feder, H.M., Hubbard, W.N., Wise, S.S., Margrave, J.L., (2)J. Phys. Chem. 67, 1148 (1963).
- Hubbard, W.N., Katz, C., Waddington, G., *Ibid.*, 58, 142 (1954). Jarry, R.L., Miller, H.C., *Ibid.*, 60, 1412 (1956). (3)
- (4)
- Ludwig, J.R., Cooper, W.J., J. CHEM. ENG. DATA 8, 76 (1963). (5)(6)Nuttall, R.L., Wise, S., Hubbard, W.N., Rev. Sci. Instr. 32, 1402 (1961).
- Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., Jaffe, I., (7)Natl. Bur. Std., (U.S.), Circ. 500, 1952.
- Ruff, O., Wallauer, H., Z. anorg. allgem. Chem. 196, 421 (1931). (8)

RECEIVED for review February 17, 1965. Accepted June 1, 1965. This work was supported by the Advanced Research Projects Agency under Contract No. AF04(611)-7554(2).

# Vaporization and Sublimation of SrCl<sub>2</sub>

RONALD E. LOEHMAN, RICHARD A. KENT, and JOHN L. MARGRAVE Department of Chemistry, Rice University, Houston, Tex.

> The sublimation and vaporization rates of SrCl<sub>2</sub> have been determined by means of the Langmuir and Knudsen techniques, respectively. The third-law heat of sublimation at 298° K. is 78.6  $\pm$  1.0 kcal. mole<sup>-1</sup>.

 $\mathbf{V}$  APOR PRESSURES and sublimation pressures for several alkaline earth dihalides are now available, but no extended Langmuir and Knudsen study or mass spectrometric characterization of the vapor over condensed SrCl<sub>2</sub> has been published. Neither has there been a careful consideration of the evaporation coefficient for any alkaline earth dihalide both above and below the melting point. A comparison of the torque-Knudsen, Langmuir, and mass spectrometric results for  $CaF_2$  (2, 3, 10, 13) and  $BaF_2$  (1, 7, 8) suggests that  $\alpha_L$ , the Langmuir evaporation coefficient, may be 0.1 to 0.3 for  $CaF_2$  (g) or  $BaF_2$  (g) subliming from the solid fluorides. Burns (5) recently observed a discontinuous change in  $\alpha_L$  for the vapor species over condensed  $Al_2O_3$  at the melting point.

This paper reports Langmuir and Knudsen weight loss studies, a mass-spectrometric characterization of the vapor, and calculation of  $\alpha_L$  for SrCl<sub>2</sub>.

#### EXPERIMENTAL

The Langmuir studies were made with a sample of single-crystal SrCl<sub>2</sub> obtained from Semi-elements, Inc. The crystal was suspended from a tungsten support wire inside a quartz envelope mounted below one pan of an Ainsworth RVA-AU-2 semi-micro recording balance. A Kanthal wirewound resistance furnace controlled by a West Model JP temperature controller was used to heat the sample. The rate of weight loss was automatically recorded while temperature measurements were made with a Pt-Pt 10% Rh



| Table I. | Langmuir Sub | olimation                     | Data <sup>1</sup> | for SrCl <sub>2</sub> |  |
|----------|--------------|-------------------------------|-------------------|-----------------------|--|
|          |              | $(F^{\varphi} - H^{\otimes})$ |                   |                       |  |

|                                                        |                          |              |             | $\Delta\left(\frac{T}{T}\right),$ |                                 |  |
|--------------------------------------------------------|--------------------------|--------------|-------------|-----------------------------------|---------------------------------|--|
| Τ,                                                     | $\Delta w \times 10^4$ , | $\Delta t$ , | $-\log P$ , | Cal. Mole <sup>-1</sup>           | $\Delta H_{2s}^{\infty}$ (sub), |  |
| ° K.                                                   | Grams                    | Sec.         | Atm.        | $Deg.^{-1}$                       | Kcal Mole <sup>-1</sup>         |  |
| 985                                                    | 3.1                      | 5,040        | 9.001       | 40.27                             | 80.24                           |  |
| 1037                                                   | 18.2                     | 5,040        | 8.222       | 40.00                             | 80.49                           |  |
| 1039                                                   | 6.1                      | 1,920        | 8.227       | 40.00                             | 80.68                           |  |
| 1067                                                   | 16.6                     | 1,800        | 7.807       | 39.85                             | 80.63                           |  |
| 1119                                                   | 19.5                     | 360          | 7.029       | 39.58                             | 80.28                           |  |
| 969                                                    | 1.8                      | 5,520        | 9.281       | 40.33                             | 80.23                           |  |
| 974                                                    | 0.5                      | 1,440        | 9.252       | 40.21                             | 80.40                           |  |
| 971                                                    | 1.3                      | 4,200        | 9.302       | 40.32                             | 81.32                           |  |
| 970                                                    | 1.3                      | 6,720        | 9.509       | 40.32                             | 81.32                           |  |
| 968                                                    | 1.2                      | 8,040        | 9.622       | 40.34                             | 81.67                           |  |
| 999                                                    | 4.7                      | 8,280        | 9.033       | 40.21                             | 81.46                           |  |
| 1015                                                   | 7.4                      | 7,680        | 8.799       | 40.13                             | 81.60                           |  |
| 1018                                                   | 8.9                      | 8,760        | 8.697       | 40.10                             | 81.34                           |  |
| 1027                                                   | 16.6                     | 12,960       | 8.674       | 40.06                             | 81.90                           |  |
| 1050                                                   | 8.3                      | 3,000        | 8.336       | 39.94                             | 81.98                           |  |
| 1055                                                   | 10.3                     | 3,360        | 8.291       | 39.92                             | 82.14                           |  |
| 1062                                                   | 19.8                     | 4,800        | 8.158       | 39.88                             | 82.00                           |  |
| 1081                                                   | 24.2                     | 3,240        | 7.896       | 39.78                             | 81.98                           |  |
| 1090                                                   | 31.8                     | 2,400        | 7.644       | <b>39.7</b> 3                     | 81.43                           |  |
|                                                        |                          |              |             | Av. = 8                           | $1.2 \pm 0.70$                  |  |
| rea SrCl <sub>2</sub> crystal = $3.47$ cm <sup>2</sup> |                          |              |             |                                   |                                 |  |

log P (atm.) =  $-(1.56 \pm 0.077) \times 10^4 T + (6.70 \pm 0.14)$ 

thermocouple suspended near the sample. The thermocouple was calibrated against a standard thermocouple from the National Bureau of Standards. The pressure inside the system was monitored by means of an ionization gage and was maintained below  $2 \times 10^{-6}$  torr during the runs while the temperature remained constant to within  $\pm 3^{\circ}$  K.

For measurements above the melting point of  $SrCl_2$ , Knudsen cells were machined from high-density, spectroscopic-grade graphite rods. Clausing factors for the cell lids were calculated using the results of Iczkowski, Margrave, and Robinson (11). Experiments in which the vapor over  $SrCl_2$  was effused from Vycor Knudsen cells into a Bendix time-of-flight mass spectrometer yielded only  $SrCl^+$  ions.

The various data obtained from the Langmuir and Knudsen measurements (968 to  $1307^{\circ}$  K.) were fitted to the equation log P = B - A/T by the method of least-squares using a digital computer.

#### RESULTS AND DISCUSSION

The mass spectrometric observation of only SrCl<sup>+</sup> ions is typical for alkaline earth dihalides which have previously been shown to undergo dissociative ionization on electron impact (2, 3, 7, 10). Thus, in all calculations from the Knudsen and Langmuir weight loss data, SrCl<sub>2</sub>(g) is assumed as the major vapor species. The results and calculated heats of sublimation and vaporization, based on the free energy and heat content functions of Brewer and coworkers (4), and of Dworkin and Bredig (6), are presented in Tables I and II. The data points are shown in Figure 1, along with some recent direct boiling point measurements (12) and unpublished torque-Knudsen work (9) with the least-squares derived equations shown as solid lines. The vapor pressure values determined in this work agree with those of Van Westenburg (14) within the limits commonly observed for this type of measurement.

The second-law heats for the Langmuir and Knudsen experiments are identical, within experimental error, when corrected to 298° K. (77.6  $\pm$  3.5 kcal. mole<sup>-1</sup> and 78.4  $\pm$  5.2 kcal. mole<sup>-1</sup>, respectively). In contrast, the third-law heats, which depend directly on the absolute pressures, show that the hypothetical Langmuir sublimation at 298° K. requires 2.6  $\pm$  1.0 kcal. mole<sup>-1</sup> more energy than predicted by the Knudsen data. This suggests  $\alpha_L = 0.3 \pm 0.2$  for SrCl<sub>2</sub>(g) subliming from SrCl<sub>2</sub>(s). The uncertainties in the second-law heats are such that this activation energy is within these limits.

## Table II. Knudsen Vaporization Data for SrCl<sub>2</sub>

|       |                          |              |             |                                                               | =                               |
|-------|--------------------------|--------------|-------------|---------------------------------------------------------------|---------------------------------|
|       |                          |              |             | $\Delta\left(\frac{F_{T}^{\circ}-H_{298}^{\circ}}{T}\right),$ |                                 |
| Τ,    | $\Delta w \times 10^4$ , | $\Delta t$ , | $-\log P$ , | Cal. Mole <sup>-1</sup>                                       | $\Delta H_{298}^{\circ}$ (vap), |
| ° K.  | Grams                    | Sec.         | Atm.        | Deg. <sup>-1</sup>                                            | Kcal. Mole <sup>-1</sup>        |
| 1219ª | 4.7                      | 6,120        | 5.499       | 39.06                                                         | 78.28                           |
| 1212  | 2.4                      | 2,400        | 5.385       | 39.10                                                         | 77.25                           |
| 1228  | 7.8                      | 7,680        | 5.376       | 39.01                                                         | 78.11                           |
| 1242  | 7.4                      | 5,400        | 5.243       | 38.94                                                         | 78.16                           |
| 1252  | 8.8                      | 4,200        | 5.057       | 38.89                                                         | 77.66                           |
| 1278  | 15.2                     | 5,160        | 4.904       | 38.75                                                         | 78.20                           |
| 1272  | 14.9                     | 6,120        | 4.988       | 38.79                                                         | 78.37                           |
| 1285  | 15.0                     | 4,920        | 4.888       | 38.71                                                         | 78.49                           |
| 1264  | 5.4                      | 3,840        | 5.228       | 38.83                                                         | 79.32                           |
| 1307  | 13.0                     | 3,720        | 4.826       | 38.60                                                         | 79.31                           |
| 1195° | 13.7                     | 6,480        | 5.879       | 39.19                                                         | 78.98                           |
| 1209  | 11.5                     | 3,960        | 5.711       | 39.11                                                         | 78.88                           |
| 1220  | 12.1                     | 3,000        | 5.575       | 39.06                                                         | 78.78                           |
| 1227  | 22.1                     | 4,560        | 5.510       | 39.02                                                         | 78.81                           |
| 1242  | 10.0                     | 1,800        | 5.370       | 38.94                                                         | 78.88                           |
| 1254  | 9.9                      | 10,800       | 5.225       | 38.88                                                         | 78.74                           |
| 1262  | 18.7                     | 13,920       | 5.144       | 38.84                                                         | 78.72                           |
| 1266  | 14.7                     | 8,040        | 5.084       | 38.81                                                         | 78.58                           |
| 1273  | 14.1                     | 2,280        | 5.036       | 38.78                                                         | 78.70                           |
|       |                          |              |             | Av. = 7                                                       | $8.6 \pm 0.4$                   |

log P (atm.) =  $-(1.439 \pm 0.113) \times 10^4/T$  + (6.28  $\pm$  0.09). <sup>a</sup> For lid No. 1 (first 10 points), orifice diameter = 0.788 mm., Clausing factor  $W_{\circ} = 0.3105$ . <sup>b</sup> For lid No. 2 (last 9 points), orifice diameter = 1.235 mm., Clausing factor  $W_{\circ} = 0.3581$ .

Similar discrepancies between Langmuir and Knudsen studies of CaF<sub>2</sub> (2, 3, 7, 10, 13) and BaF<sub>2</sub> (1, 7, 8) have been noted and support the idea that monomeric  $MX_2(g)$  species escape from single crystal surfaces into vacuum at a rate slower than predicted by thermodynamic data—i.e.— $\alpha_L$  <1. Qualitative calculations for CaF<sub>2</sub> and BaF<sub>2</sub> show the  $\alpha$ 's to fall in the range 0.1 to 0.5, in agreement with the data presented here.

From the dimensions of the orifices used in the various Knudsen measurements on alkaline earth dihalides, one estimates  $\alpha_c$ , the condensation coefficient for  $MCl_2(g)$  on  $MCl_2(l)$ , is in the range 0.8 to 1.0.

#### ACKNOWLEDGMENT

The authors acknowledge the support of this work by the National Aeronautics and Space Administration, the United States Atomic Energy Commission, and the Robert A. Welch Foundation.

## LITERATURE CITED

- (1) Bautista, R.G., Margrave, J.L., J. Phys. Chem. 69, 1770 (1965).
- (2) Berkowitz, J., Marquart, J.R., J. Chem. Phys. 37, 1853 (1962).
- (3) Blue, G.D., Green, J.W., Bautista, R.G., Margrave, J.L., J. Phys. Chem. 67, 877 (1963).
- (4) Brewer, L., Somayajulu, G., Brackett, E., Chem. Rev. 63, 111 (1963).
- (5) Burns, R.P., Jason, A.J., Inghram, M.G., J. Chem. Phys. 40, 1661 (1964).
- (6) Dworkin, A.S., Bredig, M.A., J. Phys. Chem. 67, 697 (1963).
- Green, J.W., Blue, G.D., Ehlert, T.C., Margrave, J.L., J. Chem. Phys. 41, 2245 (1964).
- (8) Hart, P.E., Searcy, A.W., University of California Radiation Laboratory, U.C.R.L.-11129, January 16, 1964.
- (9) Hildenbrand, D.L., Aeronutronics, Newport Beach, Calif., private communication, 1964.
- (10) Hildenbrand, D.L., J. Chem. Phys. 40, 3438 (1964).
- Iczkowski, R.P., Margrave, J.L., Robinson, S.M., J. Phys. Chem. 67, 229 (1963).
- (12) Novikov, G.I., Gavryuchenkov, F.G., Zh. Neorgan. Khim. 9, 475 (1963).
- (13) Schultz, D.A., Searcy, A.W., J. Phys. Chem. 67, 103 (1963).
- (14) Van Westenberg, J.A., Dissertation Abstr. 25, 1129 (1964).
- RECEIVED for review January 18, 1965. Accepted June 7, 1965.